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1. Introduction

In [1]-([3] we have shown that, for certain classes of nonlinear
stochastic systems in both continuous and discrete time, the optimal
conditional mean estimator of the system state given the past observations
can be computed with a recursive filter of fixed finite dimension. The
typical nonlinear system in these classes consists of a linear system with
linear measurements and white Gaussian noise processes, which feeds forward
into a nonlinear system described by a certain type of Volterra series
expansion or by a bilinear or state-linear system satisfying certain
algebraic conditions.
problems similar to those in [1]-[3], to present simpler proofs that the
estimators are indeed finite dimensional, to provide deeper insight into -
these problems by relating them to the homogeneous chaos of Wiener and to
orthogonal polynomial expansions [4]-[8],[24], to explain the
similarities and differences between the continuous and discrete time cases,
and to prove some extensions of our previous results. The existence of
polynomials in the innovations in the discrete time recursive estimator, in

contrast to the continuous time estimator (as noted in [2]), is interpreted
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It is our purpose in this paper to consider estimation
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in terms of the homogeneous chaos. The existence of such polynomials in
the innovations in the optimal filter suggests that suboptimal filter
design in discrete time could be improved by incorporating such structure;
this is in contrast to most discrete time estimator designs, such as the i
extended Kalman filter, in which the updated estimate is linear in the

innovations (exceptions are the quasi-moment estimators of [9] and [10])

and the higher measurement space filter of [23].

2. Problem Statement
As in [1]-[3], the classes of systems considered in this paper are
described as follows. It will be assumed that all random variables and
processes are defined on a probability space (2,B,P). In continuous time,

we consider systems of the form, for te{0,T],

dx(t) = A(t)x(t)dt + B(t)dw(t) (1)
dy(t) = £(x(t),y(t),t)dt (2)
L

dz, (t) = C(t)x(t)dt + R'dv(t) (3)
where x(t)e ]Rn, y(t)e Rm, z(t)e ]Rp, w and v are standard vector Wiener
processes, R>0, x(0) is Gaussian, {x(0),y(0),w(t),v(s)} are independent
for all t and s, f is an analytic function of x and y, and [A(t),B(t),C(t)]

is completely controllable and observable.

The discrete time systems to be considered are of the form, for

te{0;T},
x(t+1) = A(t)x(t) + B(t)w(t) (4)
y(t+l) = f(x(t),y(t),t) (5)
z,(t) = C(t)x(t) + R% () (6)

where TcZ+, the set of positive integers, and {s;t} is the set of integers

{s,s+1,...,t}. The assumptions in (4)-(6) are the same as those in (1)-(3),

.‘*
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except that w(t) and v(t) are zero-mean Gaussian white noise processes.
Motivation for the study of systems of the form (1)-(3) and (4)-(6) is
presented in (3].

The optimal estimate, with respect to a wide variety of criteria
(including minimum mean square error), of x(t) given the past observations
z; A {zl(s), 0<s<t} or z; A {22 (s), se{0;t}}, is the conditional mean
i(tlt) of x(t) given the o-field F:i generated by z:, also denoted
E[x(t)lz;]. It is assumed that all the relevant random variables are in
Lz(Q,B,P), so the conditional expectation i(tlt) can also be interpreted
as the orthogonal projection of x(t) onto the subspace LZ(Q,F:i,P)

[14, App. A.]; this interpretation will be used in the sequel. Predicted
and smoothed estimates will also be used extensively, so we introduce the
equivalent notations i(s]t) A E[x(s)lz;] gEt[x(s)] AE[x(s) IF:]. Thus our
objective is the recursive computation of i(tft) and §(t|c). The
Eomputation of i(t|t) can be performed by the recursive n-dimensional
(l1inear) Kalman filter in continuous or discrete time. It is, in general,
not possible to compute y(t|t) with a recursive estimator of fixed finite
dimension. It has been proved in [1]-[3] that if the nonlinear system
(2) or (4) is characterized by a certain type of finite series expansion
or by certain bilinear or state-affine equations, then §(tlt) can be
computed by such a recursive finite dimensional estimator. Some of the
major results can be summarized as follows.

Let the Volterra series expansions for the ith components of y(t) in

(2) and (4) be given by

o, i t n €O yv vl )
i k
g i) aw )% T T o] ) w (ty0,3:0050.)
1 01 w8 B0 oD ki 1 k
. xal(ol)...xak(sk)dol...dok (7)




—

and

‘i t'z-l l)‘} ((!.1... ,ak)
y,(t) = w_ (t-1) + w (el ... L)
1 01 L % . o g "
klll,...,ZkOQl,...,ak 1
. xal(ﬂl)...xak(lk), (8{
(a ,...,ak)

respectively. Here w is called a kth order kernel, and a finite

ki

Volterra series expansion of order q is one such that all kth order kernels

are zero for k>q. In the continuous case (7), we consider, without loss
of generality [11], only triangular kernels which satisfy

(0.1: cee ’ak)
ki 1,...,0k)=0 unless 0'<o1 % 5% <5k <t. Such a kernel is
separable if it can be expressed as a finite sum

w (t,o

m
W (€:015.0050)) = jgl yjo(t)yjl(ol)...vjkwk). (9)

Similar definitions can be made in discrete time [2], but they are more
complicated (this difficulty is related ro the fact that the solution of a
discrete time system may not be defined backward in time [12],[21}).
Brockett [11] and Gilbert [13] have shown that the kernels in (7) are
separable if f is analytic. Using variational expansions similar to those
of Gilbert [13], it is straightforward to show that the kernels of the
Volterra series (8) are also separable in the sense of [2],[12]; this is
basically due to the fact that the kernels arise from the variational
equations as products of pulse responses of linear systems. Brockett [11)
has also shown that a continuous time finite Volterra series has a bilinear
realization if and only if it has separable kernels. The separability and
realizability results are crucial in the proofs of the following two

theorems.

-9
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Theorem 1 [1]: Consider the system (1)-(3), and assume that (2) has
a finite Volterra series expansion. Then y(t|t) can be computed with a
finite dimensional recursive estimator--i.e., by a finite set of nonlinear
stochastic differential equations driven by the innovations

t
vi(t) &z (¢) - {) C(s)x(s|s)ds. (10)

Theorem 2 [2]: Consider the system (4)-(6), and assume that (5) has

a finite Volterra series expansion. Then §(t|:) can be computed with a

finite set of nonlinear difference equations driven by the innovations

v, () = z,(t) - C(t)A(t-1)x(t-1|t-1). (11)

The basic technique employed in [1]-[3] to prove these theorems is
the augmentation of the state of the original system with additional states
which arise as smoothed statistics of the original state. For the classes
of systems considered here, it is shown that only a finite number of
additional states (smoothed statistics) are required. We will see here,
from a different point of view, how the additional filter states arise.

In addition, we will prove results similar to Theorems 1 and 2 for some
systems in which equations (2) and (4) for y(t) contain an additive noise
term.

In this paper both the continuous and discrete time problems will be
considered in a unified framework, It is useful first to contrast these
problems with the estimation and prediction problems considered by Huang
and Cambanis [8]. There the problem is that of estimating a nonlinear
functional y of a Gaussian process {x(t), teS!, given observations of

{x(t), teé}, where S is a subset of S. In our problem the objective is




to recursively estimate a nonlinear functional y(t) of x(*), given
observations of linear functionals of x(°) plus noise. Although the
elegant formulas of Huang and Cambanis cannot be applied here, the
approach of utilizing the homogeneous chaos, or, equivalently, the
Cameron-~Martin orthogonal series decomposition of a Gaussian process [4]---
[8], will prove to be quite useful in unifying and simplifying our results.
By employing the "innovations approach" [15],[16], the conditiomal
expectations y(t|t) of Theorems 1 and 2 can equivalently be viewed as
projections on Hilbert spaces generated by the innovations instead of the
observations. For the discrete time problem (4)-(6) it can easily be
shown recursively that F:z = F:z,so that §(t|t) is the projection of y(t)
onto LZ(Q,FZZ,P); in fact vz(-) is just obtained from the Gram-Schmidt
orthogonalization of the sequence 22(°). It has been shown [15],[16] for
continuous time Gaussian processes (as in (1), (3)) that F:l = F:I; hence,
;(t|t) is the projection of y(t) onto LZ(Q’F:l’P)’ The innovations process
vl(t) is a Wiener process with the same covariance as Rlﬁ v(t) [14]-[16];
the innovations process vz(t) is a zero-mean Gaussian white noise sequence
with E[vz(t)vz(t)'] = C(t)P(tlt—l)C'(t) + R, where P(tlt-l) is the Kalman
filter one-step error covariance matrix [17]. In both cases, the linear
and nonlinear innovations are equal. Hence the estimation problem (1)-(3)
or (4)-(6) can be reformulated as that of estimating y(t), a nonlinear .
Lz-functional of the Gaussian process xt; the estimate ;(tlt) is the

nonlinear L,-functional of the innovations process (either v; or v;) which

2
minimizes the mean square error. The expansion of such Lz—functionals of
Gaussian processes is the subject of [4]-[8], and the application of these

results to our recursive estimation problem is presented in the next

section, where a new proof of Theorem 1 is presented and the corresponding
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proof of Theorem 2 is outlined.

3. LZ-Functionals of Gaussian Processes and
Finite Dimensional Estimation

Kallianpur [7] has generalized the earlier results of Cameron and
Martin [5] and Ito [6] on the orthogonal decomposition of Lz-functionals
of a Gaussian process. We will not require all of the isomorphisms
presented in [7]; only the following decomposition in terms of Hermite
polynomials will be utilized here [8]. Let x(t), teS, be any zero-mean
second order Gaussian process defined on (Q2,B,P); for our purposes S will
be either an interval [0,T] or the discrete time set {0;T}. Define the
two Hilbert spaces associated with x: the nonlinear space LZ(XO QIQ(Q,FX,P),
where F* is the o-algebra generated by x(t), t:S; and the linear space H(x),
the closed subspace of L2(x) spanned by x(t), teS.

Lemma 1 [7],([8]): 1If {SY,YEP} (T linearly ordered) is a complete
orthonormal set (CONS) in H(x), then the family
v)";5

'e.op !
(p Py

H T R (O
Y, ¥ pl(Eyl) Pk( Yy

p20, k>1, p1+...+pk-p, Yl<...<‘y'k,

is a CONS in Lz(x), where Hn is the nth normalized Hermite polynomial.

P

That is, any L,-functional § of x(+) has the orthogonal series expansion

2
P.e-:P
o= 7 ) o e ). e ) (12)
20 pyte ot M1k P Ny P Yk
Yy eee €Yy

Remark: If x has nonzero mean, the representation of Lemma 1 can be
written with respect to a centered CONS, and the ccefficients in (12) will

depend on the mean of x.




Corollary 1 [6]: If x(t), te[0,T) is a standard Wiener process, then
any eeLz(x) has the orthogonal expansion

T t

S S et
Io p(Ep e n e Ax(E ) (e dx(e )

e=§f

)
p>0 0 0

A pgo Ip(fp) (13)

where the integrals in (13) are iterated stochastic integrals; also,

Ip(fp) and Iq(fq) are orthogonal for all p#gq.

Now we consider the estimation problems of Theorems 1 and 2 in this
framework. Assume throughout this section, for simplicity of notation,
that x,y,zl, and z2 are all scalars; the following results also hold in the
vector case. The state y(t) (as given by (2) or (4)) is a nonlinear
functional of xt; assume that y(t) has a finite Volterra series expansion

(of the form (7) or (8)) of order q. It is then clear that y(t) has a

Pys--Px _

finite orthogonal series expansion (12) of order q -- i.e., with aYl Vi

for p>q. In the continuous case, the {51} are centered versions of
functionals of the form {:¢1(s)x(s)ds, while in the discrete time the {Ei}
are just centered linear combinations of the x(s), se{l;t}. The estimate
§(t|t) is a nonlinear Lz-functional of the Gaussian innovations process;
thus it also has an orthogonal expansion of the form (12). In continuous-’
time vl(t) is a Wiener process, so §(t|t) has the expansion (13) with

%

vl(t). In discrete time, vz(t) is an orthogonal sequence, so

15vz(t) is a CONS in H(v:), and the expansion (12)

x(t) = R

n(t) 8 [C(C)ZP(tIt-l) +R]”

is valid with Ei = n(i).
Thus Theorems 1 and 2 can be proved by showing that: (a) the

orthogonal series expansion of ;(tlt) has only a fixed finite number of

-




terms for all t; and (b) such a finite orthogonal series can be realized
as the output of a finite dimensional recursive system (i.e., a system
in state-space form). The states of this finite dimensional system are
the additional filter states referred to in Section 2. The following
theorem proves (a) for a more general formulation; the proof of (b) must
be done separately for continuous and discrete time, and involves the
calculation and separability of the Volterra kernels.

Theorem 3: Let x(t), z(t), teS be zero-mean jointly Gaussian second
order processes, and assume that yeLZ(x) has an orthogonal series

expansion of order q. Let the orthogonal expansion of y A E[yle] be

given by
. rl...r
y= 1 ) b ol m ey e B, 0y ) (14)
r>0 r1+...+rj=r | ) S | . S
Bl €oee <Bj

where {nG,GEAl} is a CONS in H(z). Then

) IR o
bBl Bjao, r>q;
1°+By

that is, 9 also has an orthogonal expansion of order q.

Proof: Consider H(x,z), the linear space spanned by {x(t),z(t);teS}.
Since {n6,6eA1} is an orthonormal set in H(x,z), it can be completed by
adding elements {nc,éeAz} in H(x,z) to form the CONS {n6,65A1UA2} in s
H(x,z). The orthogonal expansion for y can then be rewritten in terms of

this CONS in H(x,z); the new expansion is clearly also of order q:

q Pyeeep
y= 1 ) g L EIR B ) (15)
p=0 pyt...tp = "1k P11 Pr Y
y1<...<Yk

where {yi}e A1UA2. Now ; is the orthogonal projection of y onto Lz(z);




that is, by Lemma 1 y is just the projection of y onto the space spanned

1,...,ykeA1. The orthogonality

of such products in L2(x,z) (see Lemma 1) then yields

by the products le("Yl)"'HPk(“Yk) with vy

q P,sceP
y = z z ch k
= +...4p =
p=0 Py PP
Ylk...<Yk

( (

n ans B (o ) (16)
s SRE VR P Yy

.
where {Yi} eAl, thus proving the theorem.

Theorem 3 also holds for nonzero-mean and vector-valued processes,
with obvious modifications in the proof. This theorem then applies to
;(t]t) of Theorems 1 and 2. It remains only to prove that the finite
orthogonal series expansion for §(t!t) is realizable with a nonlinear
recursive system of fixed finite dimension. Consider first the continuous
time problem (1)-(3).

Proof of Theorem 1: Assume that y(t) has a finite Volterra series

expansion of order q. Then Theorem 3 implies that ;(tlt) has the

orthogonal expansion

3 Mg sp S,
y(t|t) = pzo'% . e {) fp(t,sl,...,sp)dv(sl)...dv(sp) (17)

%

where v(t) A R dvl(t). The projection theorem and the orthogonality of

the iterated stochastic integrals [6] imply that, for 51 % see € sp< t,

1 aP
fp(t,sl,...,sp) =-I-)-!- W E[y(t)V(sl)...v(sp)] (18)

(the proof of (18) is analogous to that of Davis [14, p. 95] for the best

10
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linear estimate).1 A proof identical to that of Brockett [11] for the
deterministic case shows tnat, i1f the kernels (18) are separable (see (9)),
then §(t[t) in (17) can be generated as the output of a finite dimensional
bilinear system driven by the innovations v(t). Hence, Theorem 1 is
proved if the kernels in (18) are separable.
Lemma 2: The triangular kernels fp(t,s

10

separable for s CE B <sp < t under the hypotheses of Theorem 1.

Proof: Let y(t) be given by one kth order term in the finite Volterra

.,sp) given by (18) are

series (7); the proof generalizes in the obvious way. Since the kernels
of (7) are separable due to the analyticity assumption in (2), we
can assume that

L = T

y(t) = f f k e f 2 yl(rl)...yk(rk)x(rl)...x(rk)drl...drk (19)
0 0 0
Thus, by the Fubini theorem (see [1],[3])
LT T
il k 2
fp(t,sl,...sp) =E fo fo fo Yl(rl)...yk(tk)
aP .
. 3;;77?5;; E[x(rl)...x(Tk)J(sl)...v(sp)]drl...dtk (20)

Since x(rl),...,x(rk),v(sl),...,v(sp) are jointly Gaussian, the
expectation in (20) can be expanded via Lemma B.1 of [1],

resulting in a sum of products of terms of the form: E[x(ri)], E[v(si)],'

lln general, whenever the linear innovations v (t) in a nonlinear estimation
problem form a Wiener process, then an (infinite) orthogonal expansion of
the form (17) will hold for the estimate of each L2-state y(t), and the
kernels are calculated via (18). The sum of the first two terms (p=0,1)
in (17) is the best linear estimate, the sum of the terms for p=0,1,2
yields the best quadratic estimate, etc. These are not necessarily

% realizable with finite dimensional recursive filters.

)! 11




cov[x(ri),x(rj)], cov[x(ri),v(sj)], and cov[v(si),v(sj)]. Notice that
E[v(si)] =0, so all products involving such terms are zero. If

cov[v(s,),v(s,)] arises, it results in a term of the form

i 3

3;;3;; cov[v(si),v(sj)], which can be shown to be zero for si#sj.
Also, cov[x(ri),x(TJ)] is the covariance function of the state of the

linear system (1); hence, for 11_>Tj,

T
covlx(r)),x(x )] = expl [ 1 A(0)ao] covlx(r,),x(x,)] (21)
T

J
Finally, consider

%

S
covlx(t,),2(s,) - [ 3 C(0)x(o]0)da]
J 0

R cov[x(Ti),V(Sj)]

L}

A
covlx(z,), £l C(c)(x(c)-i(o!o))do+v(sj)]
0

S
covlx(z,), [ I C(o)(x(@)-k(ala))do) (22)
0

since x(ti) and v(s,) are independent. This gives rise in (20) to

3&; cov[x(ri),v(sj)] = R—%

cov[x(ri),C(s

%

J)(x(sj)-x(sjlsj)))

= C(sj)R-

which 1s the covariance function of a finite (two-) dimensional linear

cov[x(ri),x(s

— )
j) x(sjls ), (23)

system with states x(t) and x(t)-x(t|t), and is thus also separable.

Lemmna B.1 of [1] and the separability of the relevant covariance

functions imply that there exist functions {021’821} such that (20) can

be written as

12
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{ < T

<oy k 2
fp(t,sl,...,sp) = fo Io fo yl(rl)...yk(‘rk)

m
5 ( ) all(Tl) i 'alk(Tk)Bf_l(sl) - 'Blp(sp))dTl' - .dtk
] Gz(t)Bzfsl)...Bzésp), (24)

and fp is separable as claimed; this also completes the proof of Theorem 1.
An example in which the kernels and the recursive estimator are
computed explicitly is presented in the next section. The discrete time
result which is analogous to Lemma 2 can be used to prove Theorem 2, but
for the sake of brevity we will only present an example of the procedure

(Section 5).

4. A Continuous Time Example
Before.discussing the example, we present an extension of Theorem 1
to a class of systems in which y(t) contains process noise; the analogous
extension of Theorem 2 is proved in the same manner.
Theorem 4: Consider the system (1)-(3), and assume that (2) has a
finite Volterra series expansion. Assume that there is an additional

state yl(t) satisfying

dy, (t) = (F(t)y, (£) + G(t)y(t))de + H(t)dw(t) (25)

where w is a Wiener process and {x(O),y(O).yl(O),w(tl),v(tz),ﬁ(t3)} are

independent for all t Then §l(t|t) can also be computed with a

1’t2’t3'
finite dimensional recursive estimator.

Proof: The solution of (25) is

13




t t
y,(t) = ¢(t,0)y, (0) + | o(t,s)G(s)y(s)ds+ [ o(t,s)H(s)dw(s)
0 0

t

8y, (t) + [ o(t,s)H(s)du(s) (26)
0

where ¢ is the state transition matrix for F. Since w(+) and z(+) are
independent, §l(t|t) A E[yl(t)IF:] = E[;l(t)[F:], and §1(t) is just
described by a finite Volterra series expansion in x. The theorem then
follows from Theorem 1.

Example 1: Consider the scalar system

dx(t) = -ax(t)dt + dwl(t) (27)
ay(e) = (-yy(t) + x*(£))dt + duy(t) (28)
dz(t) = x(t)dt + dv(t) (29)

with the same assumptions as in Theorem 4. The solution of (28) is
. £ ytesg) 2 oy (t-0)
y(t) = e id y(0) + [ e ! x (o)do + I e ! dwz(o) (30)
0 o

By Theorems 3 and 4, it follow that

t t 32
y(t|t) = NOR [ £,(t,8)dv(s) + ) S | £,(t,s,,8
0

)dv(s_ )dv(s,),
0 0 1 2

(31)

1°2

where v(t) = z(t)—-f; ;(s]s)ds. Using (18) to compute the kernels as in

Lemma 2, we have (since y(0) and w are independent of v)

-yt t -y(t-o) 2
£,(t) = Ely(6)] = ™' E[y(®)) + [ e E[x" (0) Jdo (32)
‘ 0

‘.'1




) A
) = 55 By ®v@] =50 [ & L o)us) 1do

e oTE=0)

4 8
w(o) = E[x(0) [ (x(1)-x(t|r))d1]do
0 - 0

t
=2 [ D uge) Elx(o) (x(s)-k(s]s)) 1do  (33)
0

ao

where m(o) = E[x(0)] = e = E[x(0)]. It can be shown, using Lemma 2.2 of

[1], that
P Lot BTN a>s
E[x(0) (x(s)-x(s|s))] = (34)

l K(s,0) P(s), og<s

s
where K(s,o0) = exp[a(s-o)-—fc P-l(T)dT] and P(t) is the Kalman filter

error covariance for x(t). Thus

8§ Twe t____ o
fl(t,s) = 2 [f e v(t-0) m(o)K(s,0)dc + f e 7 (t=c) m(o) e a(o-s) do]P(s)

0 s
(35)
Similarly,
%1 -y(t-0)
fz(t,sl,sz) = [.g " K(sl.o)K(sz,o)do
s, =-y(t-0) -a(o-s.)
+ f 2 e e 1 K(sz,o)da
"1
-a(o-s.) -a(o-s,)
e ft e‘*“’°) e * ’ do] P(s,)P(s,)
"2 (36)
(recall that 0 < s, < s, <t).

These kernels are obviously separable, so §(t|t) can be realized as

p the output of a finite dimensional bilinear system driven by the 1

-
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innovations. However, it may not be efficient to realize each term in
(31) individually. In fact, one efficient recursive realization of §(t|t)
is readily derived via the procedure of [1, Example 2.1]; a recursive 3-state
) filter which computes both i(tlt) and Q(t[t) is constructed as follows.

First, augment the state x(t) of (27) with the additional state E(t)
given by

E(E) = (a-y =P H(E)E(E) + x(8); &(0) = 0 (37)
Then the Kalman-Bucy 2-state filter for the linear system (27), (37) with
observations (29) recursively computes i(tlt) and E(tlt). Finally, ;(tlt)
is computed by

dy(t|t) = (-79(:]:)+[i(:l:)]z+p(t))d:+zp(:)é(:lc)dv(c)

y(0l0o) = 0 (38)

1 To check that this filter has the series expansion (31),(32), (35),(36)
is straightforward.
It should also be noted that if x(t) has zero mean, then the best

linear estimate of y(t) given zt (the first two terms in (31)) is equal to
the a priori mean of y(t). This is due to the fact that, in this case, y
and z are uncor;elgted. However, since y and z are not independent, the
best quadratic estimator (which is equal to the conditional mean in this
example) can in fact offer significant improvement in estimator

’ performance (see [18] for some case studies and further analysis along

these lines).

5. A Discrete Time Example
Example 2: Consider the scalar discrete time system

x(t+l) = ax(t) + wl(t) (39)

y(t+l) = yy(t) + xz(t) + wz(c) (40)

| .




z(t) = x(t) + v(t) (41)
with the same assumptions as in Theorem 2; also, v, is a discrete time

white noise process independent of x(0), y(0), Vi and v. The solution

of (40) is

t-1 t-1
y@© =y + W e ] (42)
i=0 i=0

By Theorem 3, it follows from (16) that

t
y(t|t) = co(t) + jzo c, (,1)H, (n(3))

| + 1 ey (63,100, (N(I)H (n(Kk)

t
| + I ey, )H,(n(3)) (43)
=0
where n(t) = [P(tlt’.—l)-!-l]";i [z(t)-—ai(t-1|t-l)] are the normalized

innovations. By orthogonality (Lemma 1) and the projection theorem,

c .pk(t'jl"..':’k)-

1
I L
By 7 Ely(t) ipl(n(jl)) Hpk(n(Jk)))

pl!...pk
(44)

These kernels can, as in Example 1, be explicitly evaluated. They
. are indeed separable, and a 3-state filter can be constructed as follows -

using the methods of [1],[2]. First, augment the state x(t) of (39) with

. ayp(ele) yp(ele g -
e(eh)) = SEETTE €0 + Fenhy X5 €@ = 0 45)

Then i(tlt) and E(tlt) can be calculated by a 2-state Kalman filter.

Finally,

17
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oy

y(t+1|t+l) = ay(t|t) + Q(:]:)Z + 6(t)

+ 2M(t,t+1) [x(t!t) +yE(t|t) Jv(t+1)

t
+ [ ) yr M(i,t+l)2.]v(t+1)2

1=0 (46)
y(0]0) = 0
t-1+1
_a P(1l1)...P(t+1lt+1)
Ml 41 P(I+1|1)...P(t+1 D) "}

and §(t) are deterministic functions, and w(t) = z(t)—ai(t—llt-l) is
the unnormalized innovations process.

Notice that the recursive optimal estimator (46) contains a final
term which is quadratic in the innovations. 1In general, if y(t) contains
a Volterra series of order q in x(t), then the recursive estimator for
Q(tlt) will contain polynomials of degree q in v(t). This result was
proved in [2], but it also follows naturally from the orthogonal series
decomposition (16) of ;(tlt) -~ if y(t) has a Volterra series of order q,
(16) will contain terms such as Hq(n(t)), or polynomials of order q in
n(t). This phenomenon does not occur in continuous time estimaticn
problems with observations corrupted by "Gaussian white noise", in which
the optimal recursive estimator is always linear in the innovations.

In [2], this contrast is explained by means of the different
martingale representation theorems in continuous and discrete time [19],
[20]. However, a simple explanation is provided by the representation
(16). In continuous time, the elements nY of the CONS in Lz(zt) are of
the form f; OY(S)dvl(')' and the series (16) can be expressed in terms of
iterated stochastic integrals as in (17). Given separability, the series

can then be realized with a finite dimensional bilinear system -- that {is,

18
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the stochastic differential equations in the realization are linear in
dvl(t). In the discrete time case, the elements nY of the CONS in Lz(zt)
are given by the normalized discrete time inﬁovations n(t); the series (16)
then gives rise to a finite Volterra series in the innovations vz(t) which
contains polynomials in vz(t). Given the appropriate realizability
conditions, this series can be realized by a finite dimensional state-
affine system [2],[21] -- that is, the recursive equations in the
realization contain polynomials in vz(t). Hence state-affine equations
containing polynomials in vz(t) arise in a very natural way as realizations

of the finite series expansion of §(t|t).
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